Finsler bordifications of symmetric and certain locally symmetric spaces
نویسندگان
چکیده
We give a geometric interpretation of the maximal Satake compactification of symmetric spaces X “ G{K of noncompact type, showing that it arises by attaching the horofunction boundary for a suitable G-invariant Finsler metric on X. As an application, we establish the existence of natural bordifications, as orbifolds-with-corners, of locally symmetric spaces X{Γ for arbitrary discrete subgroups Γ ă G. These bordifications result from attaching Γ-quotients of suitable domains of proper discontinuity at infinity. We further prove that such bordifications are compactifications in the case of Anosov subgroups. We show, conversely, that Anosov subgroups are characterized by the existence of such compactifications. Along the way, we give a positive answer, in the torsion free case, to a question of Häıssinsky and Tukia on convergence groups regarding the cocompactness of their actions on the domains of discontinuity.
منابع مشابه
On 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type
In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five. Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces. Moreover, we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...
متن کاملGeneralized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملL-Spectral theory of locally symmetric spaces with Q-rank one
We study the L-spectrum of the Laplace-Beltrami operator on certain complete locally symmetric spaces M = Γ\X with finite volume and arithmetic fundamental group Γ whose universal covering X is a symmetric space of non-compact type. We also show, how the obtained results for locally symmetric spaces can be generalized to manifolds with cusps of rank one.
متن کامل